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Which are the irreducible ingredients of a (minimal) predictive model of
shape coexistence and its experimental signatures? ?

I What is there to be modeled?

I sequence of levels and their excitation energies
I E0 transition matrix elements
I E2 transition matrix elements
I (charge) radii (and isotopic shifts)
I masses (and mass differences)

I Distinguish

I deformation softness (states spread over a wide
range of deformations)

I shape coexistence (distinguishable states that might
be directly mixed)

I shape entanglement (distinguishable states that can
only be mixed via third states) Poves, JPG 43 (2016) 020410.

I role of np-n hole excitations involving intruder /
extruder states?

I Early ad-hoc model of shape coexistence: estimate
excitation energy of 0+ states from the difference in
(spherical) single-particle energies, the change in
pairing energy, a monopole correction and the
quadrupole correlation energy.

Heyde et al, PRC44 (1991) 2216

Heyde & Woods, RMP 83 (2011) 1467

M. Bender, IPN Lyon La coexistence de formes



Which are the irreducible ingredients of a (minimal) predictive model of
shape coexistence and its experimental signatures? ?

I What is there to be modeled?

I sequence of levels and their excitation energies
I E0 transition matrix elements
I E2 transition matrix elements
I (charge) radii (and isotopic shifts)
I masses (and mass differences)

I Distinguish

I deformation softness (states spread over a wide
range of deformations)

I shape coexistence (distinguishable states that might
be directly mixed)

I shape entanglement (distinguishable states that can
only be mixed via third states) Poves, JPG 43 (2016) 020410.

I role of np-n hole excitations involving intruder /
extruder states?

I Early ad-hoc model of shape coexistence: estimate
excitation energy of 0+ states from the difference in
(spherical) single-particle energies, the change in
pairing energy, a monopole correction and the
quadrupole correlation energy.

Heyde et al, PRC44 (1991) 2216

Heyde & Woods, RMP 83 (2011) 1467

M. Bender, IPN Lyon La coexistence de formes



State-of-the-art modeling of shape coexistence

I Shell model: Poves, JPG 43 (2016) 020410.

− shape remains implicit
+ good quantum numbers
+ band mixing
− intruder states require two major shells

I Interacting boson model: Nomura et al JPG 43 (2016) 020408.

− shape remains implicit
+ good quantum numbers
+ band mixing

I (Self-consistent) mean field:
+ energy surfaces with multiple minima
− no quantum numbers, nor slection rules
− non-orthogonal states
− no mixing of bands

I ”beyond mean field” by projected GCM:
+ projection → quantum numbers & selection rules
+ Generator Coordinate Method → band mixing
− computationally intensive

I ”beyond mean field” with collective Hamiltonians
+ quantum numbers & selection rules
+ band mixing

Poves, JPG 43 (2016) 020410.

the monopole hamiltonian play a very important role. In other words, the effective single
particle gap is configuration dependent. Next we diagonalize the full hamiltonian in each of
the np–nh subspaces to get the red squares in figure 3. And now, the power of the correlations
appears in full glory. Obviously the 0p–0h configuration, a single Slater determinant does not
gain any correlation energy in this step. The coherent 2p–2h bandhead gains much less than
the 4p–4h, 6p6h and over all the 8p–8h. The definition of the correlation energy is not unique;
with our choice the 4p–4h bandhead gains about 10 MeV and the 8p–8h close to 20 MeV. At
this moment of the process, the 0p–0h. 4p–4h and 8p–8h bandheads are nearly degenerate.
The intrinsic quadrupole moments of their yrast bands are consistent with a normal deformed
band (4p–4h) and superdeformed bands (6p–6h and 8p–8h). Finally, the full calculation
mixes all the configurations with the results gathered in figure 3 as blue lozenges. These are
the physical states to be compared with the experiment, and indeed the comparison is out-
standing. It is seen that the closed shell gains about 5 MeV by pairing mixing with 2p–2h
states. The 0p–0h content of the ground state is about 70%, hence we can speak of a doubly
magic 40Ca, or perhaps of a doubly magic ground state in 40Ca? The second 0+ gains a couple
of MeV by mixing with 6p–6h, and its 4p–4h nature is preserved to better than 70%. The
superdeformed bandhead gains nothing and remains almost 100% 8p–8h. In this perfect
example of extreme coexistence we discover that many of our accepted ideas about the
structure of the nucleus are in jeopardy, in particular we realize that the magic closures are
extremely vulnerable against the action of the nuclear correlators, pairing and quadrupole,
which boost the open shell intruder configurations. In figure 4 we compare the calculated
energies in the superdeformed band with the experiment in a kind of backbending plot. The
agreement is excellent. It is seen that the rotational behavior persists till the maximum
measured angular momentum.

These results can be easily recovered using our SU(3) toolkit. In the 4p–4h intrinsic state
of 40Ca, the two neutrons and two protons in the pf-shell can be placed in the lowest K = 1/2
quasi-SU3 level of the p = 3 shell. This gives a contribution Q0 = 25 b2. In the pseudo-sd

Figure 3. Energies (in MeV) of the lowest states in 40Ca at fixed np–nh configurations;
black dots, energy of the most bound Slater determinant in each np–nh subspace; red
squares, energy of the lowest 0+ in the full diagonalization in each np-nh subspace.
Energies of the three lowest 0+ states in the full diagonalization in the complete space
(blue lozenges) (from [14]).

J. Phys. G: Nucl. Part. Phys. 43 (2016) 024010 A Poves

6

Shell-model analysis of 0+ levels
in 40Ca

black: lowest Slater determinant in
given np-nh subspace

red: lowest mixed state in given
np-nh subspace

blue: full shell model calculation
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Which model ingredients are really relevant?

M. B.et al, PRC74 (2006) 024312.
SHAPE COEXISTENCE IN NEUTRON-DEFICIENT Kr . . . PHYSICAL REVIEW C 74, 024312 (2006)

FIG. 1. Nilsson plot of neutron single-particle energies with
positive (solid lines) and negative (dotted lines) parity as a function
of the intrinsic mass deformation β

(i)
2 , as obtained for 74Kr.

These modifications have a strong effect on the deformed gaps,
which may correspond to quite different deformations and
vary in size. The spin-orbit splittings for the f and p levels in
the three potentials are very similar to ours. The differences
between the single-particle spectra must thus be related to
the relative position of states with different orbital angular
momentum within a given shell.

Figure 2 shows the mean-field and J = 0 projected en-
ergy curves for 72–78Kr obtained with the SLy6 Skyrme
parametrization. Throughout this paper, the projected energy
is plotted as a function of the intrinsic β

(i)
2 value of the

mean-field states from which they are obtained. In our opinion,
this quantity provides the most convenient and intuitive label
that can be defined for all states, irrespective of the level of
modeling. However, it should not be misinterpreted as an
observable. With our method, one calculates transition and
spectroscopic multipole moments in the laboratory frame,
which can be directly compared to experimental data. How-
ever, the spectroscopic moments that characterize a state do
not provide useful coordinates to plot potential energy curves
because they scale with angular momentum and are even
identically zero for J = 0. For projected states with J > 0 and
large intrinsic deformation in nuclei with A larger than 100,
β

(i)
2 is very close to the intrinsic deformation β

(s)
2 determined

from the laboratory-frame quadrupole moment Q(s) through
the static rotor model, Eq. (3). Note that any coordinate might
be misleading for the GCM, as the metric is related to the
inverse of the overlap matrix, which has no direct connection
to any deformation.

The mean-field energy landscapes (dotted lines in Fig. 2)
show that the energies of the four nuclei vary quite slowly with
deformation. Our calculations also predict a transition from a
nucleus with coexisting prolate and oblate minima in 72Kr to a
soft, spherical, anharmonic vibrator in 78Kr. The many shallow
local minima and plateaus in the total energy curves can be
directly related to the gaps in the Nilsson diagram in Fig. 1.

The two minima in the mean-field energy curve (dotted line)
of 74Kr reflect the N = 38 gaps in the Nilsson diagram at small
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FIG. 2. Mean-field (dotted) and J = 0 projected deformation
energy curves (solid) for 72–78Kr (see text).

oblate and large prolate deformations. For 76Kr, the spherical
mean-field minimum is related to the large spherical N =
40 subshell closure, whereas the shallow oblate and prolate
structures correspond to two deformed N = 40 gaps in the
Nilsson diagram. The prolate minimum has moved to smaller
deformation than in 74Kr, with the deformed N = 38 gap being
at larger deformations than the N = 40 gap. The spherical N =
40 subshell closure is strong enough to stabilize the spherical
shape up to the N = 42 isotope 78Kr.

As can be seen from the solid lines in Fig. 2, the energy
landscapes are qualitatively modified by the projection on
J = 0. Since a spherical mean-field state is already a J = 0
state, the energy gain by projecting it on angular momentum
is zero whereas the projection of a deformed mean-field
state always leads to an energy gain, which increases very
rapidly at small deformation. In almost all spherical and soft
nuclei, this creates minima at prolate and oblate deformations
with |β(i)

2 | values around 0.1. These states usually have a
large overlap close to 1, which means they are not two
different states but represent the same one, which can be
associated with a “correlated spherical state.” In nuclei with
shallow mean-field minima at small deformations as in the Kr
isotopes, the projection merges this near-spherical spherical
minimum with the slightly oblate one into a broad structure.

024312-3

Girod et al, PLB676 (2009) 39.
M. Girod et al. / Physics Letters B 676 (2009) 39–43 41

Fig. 1. Potential energy surfaces for 72Kr, 74Kr, and 76Kr.

Fig. 2. Experimental and calculated excitation spectrum of low-lying states for 72Kr.
The spin-parity and excitation energy (in keV) is indicated for each state. The width
of the arrows is proportional to the reduced transition probability B(E2), which is
given in e2 fm4.

Table 1
Comparison of calculated and experimental excitation energies of the 0+

2 states
(in keV) [6,9], B(E2) values involving both 0+

1 and 0+
2 states (in e2 b2) [11,12],

ρ2(E0;0+
2 → 0+

1 ) values [8,9,32], and charge radii (in fm) [34].

72Kr 74Kr 76Kr

E(0+
2 ) ex. 671 508 770

th. 1406 748 926
B(E2;2+

1 → 0+
1 ) ex. 0.100(13) 0.122(2) 0.144(2)

th. 0.063 0.104 0.117
B(E2;0+

2 → 2+
1 ) ex. – 0.47(5) 0.241(11)

th. 0.100 0.364 0.234
ρ2(E0) ex. 0.072(6) 0.085(19) 0.079(11)

th. 0.116 0.263 0.228
Rc ex. 4.164(7) 4.187(4) 4.202(3)

th. 4.145 4.179 4.198

agreement with our calculations has already been demonstrated
in Ref. [11]. Experimental information on 72Kr, however, is sparse.
A comparison between experimentally known data and our calcu-
lation is shown in Fig. 2. The only known transition probability
is B(E2;2+

1 → 0+
1 ) = 1000 ± 130 e2 fm4 [12]. The calculated excita-

tion energies are higher than the experimental values, in particular
for the 0+

2 state. On the other hand, also the experimental excita-
tion spectrum is stretched compared to 74Kr and 76Kr, so that the
systematic trend is correctly reproduced by the calculations. The
transition strength in the ground-state band is found to increase
with spin in all three isotopes, which is due to the strong configu-
ration mixing in the low-spin states. The calculated energies of the
0+

2 states and some selected B(E2) values, which are revealing for
the shape coexistence, are compared to experimental values in Ta-
ble 1. The calculations overestimate the excitation energies of the
0+

2 states in all three isotopes, but the systematic trend is again
correctly reproduced with a minimum in 74Kr. At the same time,
the coupling between the 0+

2 and the 2+
1 states, which is strong

Fig. 3. Electric monopole matrix elements ρ2(E0) for the chain of light Kr isotopes
in comparison with results from the axial Skyrme GCM calculation [17] and experi-
mental values [8,9,32].

for all isotopes under study, has a maximum for 74Kr. This supports
the interpretation of 74Kr showing the strongest configuration mix-
ing.

Further information on the degree of shape mixing can be
derived from an evaluation of the electric monopole strength
ρ2(E0;0+

2 → 0+
1 ), which was calculated as

ρ2(E0;0+
2 → 0+

1

)
=

∣∣∣∣
〈0+

2 |∑Z
i=0 r2

i |0+
1 〉

R2

∣∣∣∣
2

, (9)

with R = 1.2 A1/3 fm. The results are shown in Fig. 3 together
with experimental measurements [8,9,32] and calculations based
on mixing of axial mean-field configurations using the SLy6 ef-
fective force [17]. Even though the absolute values found in our
(parameter-free) calculations are too large by an almost constant
factor of three, the systematic trend is well reproduced. The in-
crease of the ρ2(E0) value from 78Kr to 74Kr indicates increased
configuration mixing, which is found lower again for 72Kr. These
results are consistent with a maximum configuration mixing in
74Kr and an inversion of the ground-state shape for 72Kr. While the
absolute values from the axial GCM calculations [17] are in better
agreement with experiment, they do not reproduce the systematic
trend, consistent with the fact that they do not find an inversion
of prolate and oblate shapes.

The nature of the low-lying states and their associated shapes
can be understood by examining the topology of the collective
wave functions. The probability densities ρ I (β,γ ) (Eq. (8)) for the
states in the ground-state bands of 72Kr, 74Kr, and 76Kr are shown
in Fig. 4. The spectroscopic quadrupole moment Q s (in the lab-
oratory frame) and the relative weight of K = 2 components are
also given. Prolate (oblate) states with predominant K = 0 com-
ponents have negative (positive) Q s moments. Note, however, that
in our calculation K is always evaluated with respect to the pro-
late axis, so that states of axially symmetric oblate shapes have
K $= 0, and a transformation of the spectroscopic quadrupole mo-
ment into the intrinsic frame of reference with this definition of K
is not straightforward. States with Iπ = 0+ have K = 0 and Q s = 0
by definition. It should be noted that ρ I (β,γ ) = 0 at γ = 0◦ and
60◦ due to the metric of the Hamiltonian [24]. The spectroscopic
quadrupole moments, which are known experimentally (includ-

Clément et al, PRC75 (2007) 054313.

SHAPE COEXISTENCE IN NEUTRON-DEFICIENT . . . PHYSICAL REVIEW C 75, 054313 (2007)

FIG. 16. Comparison between the theoretical and experimental level schemes for the oblate and prolate bands in 76Kr (top) and 74Kr
(bottom). The excitation energies of the states are drawn to scale and the widths and labels of the arrows represent the calculated and measured
B(E2) values, respectively.

calculation. The very large matrix element between the prolate
2+

1 and the excited 0+
2 state is well reproduced by the Gogny

calculation, while it is strongly underestimated by the Skyrme
calculation. It should be noted that the B(E2) values of Fig. 16
are always given in the direction of the transition and may
therefore differ by a factor of 2Ii + 1 in some cases where the
ordering is reversed.

A grouping of the non-yrast states above the 0+
2 state into

band structures is not straightforward. The excitation energies
of the 2+

2 , 3+
1 , 4+

2 , 5+
1 , and 6+

2 states in both isotopes are
consistent with an interpretation of these sequences as gamma-
vibrational bands. The Gogny-based calculation reproduces
these sequences very well and confirms a predominant K = 2
character of the states. In this scenario the 2+

3 states in both
isotopes can be interpreted as rotational states with oblate
character built on the excited 0+

2 states. The excitation energies
and transition strengths found in the Gogny calculation are
in agreement with this interpretation, as is the sign of the
experimental diagonal matrix elements for the 2+

3 states.
The calculation finds strong mixing of K = 0 and K = 2
components for the 2+

2 and 2+
3 states in both isotopes, which

blurs a clear classification of the states.
It is interesting to note that experimentally the 2+

2 state
couples differently in 74Kr and 76Kr: In 74Kr the state decays
with equal strengths to the 2+

1 and 0+
2 states, whereas in

76Kr it decays almost entirely to the 0+
2 state. The different

character of the 2+
2 states in the two isotopes is also seen

in the diagonal matrix elements, where opposite signs are
found experimentally. If one assumes K = 2 for the 2+

2

states, the negative sign of the diagonal matrix element in
76Kr corresponds to oblate shape, which would explain the
predominant decay to the 0+

2 state. The positive sign found for
the 2+

2 state in 74Kr corresponds to prolate shape under the
assumption of K = 2. This difference is not reproduced by
the Gogny calculation, where the 2+

2 states can be interpreted
as gamma bands in the usual sense built on the ground
state.

A detailed comparison of the spectroscopic quadrupole
moments (see Tables VI, XI, and Fig. 15) is somewhat
hampered by the rather large uncertainties of the experimental
values. The spectroscopic quadrupole moments for the 4+ and
6+ states, in particular the very large experimental values for
76Kr, should be taken with care since their non-yrast partners
are not known. Taking this into account, both the Gogny and
the Skyrme calculations are in reasonable agreement with the
experiment.

It can be concluded that configuration-mixing calculations
are a valid approach to describe the shape-coexistence phe-
nomenon. The experimental set of matrix elements in 74Kr and
76Kr represents a stringent test of the theoretical models. While
the calculation of Bender et al. describes many global features
of shape coexistence in the light krypton isotopes correctly,
certain details are not reproduced, in particular the ordering of
the prolate and oblate states. The agreement with the Gogny
calculation, on the other hand, is remarkable. This suggests
that it is important to include the triaxial degree of freedom in
the calculations. This result will be discussed in more detail in
a forthcoming article from the theoretical perspective [31].

054313-17

I Which are the irreducible ingredients of a (minimal) predictive microscopic
model of shape coexistence and its experimental signatures?

I quantum mechanics
I shell structure and distinguishable configurations (that have different shape

or that can be associated with different shapes)
I different mean fields (RPA-type methods fail for shape coexistence)
I collectivity
I configuration mixing (orthogonality, band mixing, . . . )
I good quantum numbers (for selection rules of transitions).

I Is there an effective field theory of shape coexistence?
For recent work toward an effective field theory of collectively rotating and/or vibrating deformed nuclei see Papenbrock et al,

NPA852 (2011) 36; Zhang et al, PRC87 (2013) 034323; Coello-Pérez et al,PRC92 (2015) 014323
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Shell-model interpretation of beyond-mean-field states and vice versa

M. B., B. Bally, P.-H. Heenen, unpublished
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Shell-model interpretation of beyond-mean-field states and vice versa

collective wave function of the four lowest 0+ states

M. B., B. Bally, P.-H. Heenen, unpublished
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Exotic coexistences

I All examples shown so far concern the
coexistence of shapes with different
quadrupole moment.

I Are there coexistences driven by other
shape degrees of freedom?

I clustering.
I octupole?
I hexadecapole?
I tetrahedral or octahedral shapes?

I Are they also driven by np-nh
excitations or something else?

Neff, EPJST156 (2008) 69

84 The European Physical Journal Special Topics
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Fig. 5. Densities of intrinsic states used to describe 12C. First row from the left: intrinsic state obtained
by variation (V), by variation after projection on positive (V+), and on negative parity (V−). Second

row from the left: intrinsic state obtained by VAP in generator coordinate sense (VAP0
+

GCM), variation

after angular momentum projection on 0+ (VAP0
+
), and after projection on 3− (VAP3−).

center of mass we give it the label PAVπ. The center-of-mass projection usually gives only
correlation energies in the order of 0.5–2MeV and we only apply it after variation.
The variation after angular momentum projection is much more expensive, typically by

a factor of 2000. We can use it therefore only for light nuclei. Another approach is to do an
approximate variation after projection in the spirit of the generator coordinate method (GCM).
Here we minimize the intrinsic state under constraints on certain observables like radius or
quadrupole deformation. We can then find the minimum in the projected energies as a function
of the generator coordinates. We label this approach with VAPGCM.

3.3.6 Examples

To illustrate the different approaches we try to describe the 0+ and the 3− states in 12C
with a single FMD basis state. Fig. 5 shows the densities of the obtained intrinsic states. The
energies corresponding to these states are shown in table 1. E is the energy calculated with
the intrinsic state, Eπ are the energies calculated with the parity projected states and EJ

π

are the energies calculated with the states projected on angular momentum and parity. The
V state obtained by simple variation is identical to a harmonic oscillator configuration with
fully occupied 0s1/2 and 0p3/2 orbits. The V

+ state is very similar to the V state. Both have
no sizeable negative parity components. The V− state on the other hand looks very different.
It features a 3-α structure. The energy of the intrinsic state is about 12MeV higher than that
of the V state but we gain about 15MeV in binding when projecting on 0+. The VAP0

+

GCM
state where we used radius and octupole deformation as generator coordinates lies between the
shell model like V and the cluster state V−. We can get significant better binding when doing
a real variation after angular momentum projection. But the energy of the resulting intrinsic
states are here very high. The intrinsic state is optimized here to give most binding for its 0+

or 3− components respectively, without having to consider the components corresponding to
other angular momenta. It therefore becomes somewhat dangerous to deduce properties of the
projected state from looking at the intrinsic states of a VAP calculation.

3.3.7 Multiconfiguration

Whether we perform real VAP calculations, where the energy is minimized for different parities
and angular momenta, or whether we perform a VAP calculation in the generator coordinate
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closely by the realistic calculation results of Fig. 1 where,
in addition, the extremes on the horizontal axes have been
chosen in such a way that, by comparing the labels on the
left- and on the right-hand side of the figure, one can read
how quickly the parity mixing sets in when the deforma-
tion increases (the curves are symmetric with respect to
0). The parity mixing at ja32j ! 0.15 is so strong that the
typical calculated parity expectation values are "!60.5#.

Several observations deserve emphasizing. First of all,
there is a qualitative difference in the deformation depen-
dence in the two studied cases as predicted by the consid-
erations based on the point-group symmetries presented
above: At ja31j . 0.15 the level distribution can al-
ready be considered “nearly uniform” except for a rela-
tively small gap at Z ! 56 that decreases slowly with
increasing deformation. In contrast, the spectrum in func-
tion of a32 reveals strongly increasing gaps at Z ! 32,
DE . 2 MeV, at Z ! 40 with DE ! 3 MeV, and a huge
gap at Z ! 56, 58; the latter can be seen as a !4 MeV
separation in the spectrum “cut across” by a single, usual
(i.e., twice degenerate) orbital. These deformed gap sizes
are comparable to, or larger than, the strongest spherical
gaps at Z ! 20, 28, 40, or even 50, which are known in
the medium heavy nuclei; neutron results are similar.

Not all the gaps have an equal impact on the existence
(or not) of the well-defined minima on the total energy
surfaces. More extended calculations whose results will
not be presented here in detail can be summarized as fol-
lows: The strongest tetrahedral-symmetry effects appear
at proton numbers Zt ! 16, 20, 32, 40, 56–58*, 70*, and
90–94*, where the asterisks denote the gaps that are par-
ticularly strong (up to !3 MeV or so). A clear proton-
neutron symmetry exists in the calculations leading to the
related tetrahedral neutron gaps at Nt ! 16, 20, 32, 40,
56–58*, 70*, 90–94*, 112, and 136$142.

Typically, tetrahedral minima on the total energy sur-
faces are accompanied by an oblate- and/or a prolate-
symmetry minima. The energy cuts corresponding to the
paths from the tetrahedral minima down to the ground state
(g.s.) have been calculated in function of increasing b2 by
performing a minimization with respect to the g deforma-
tion as well as, simultaneously, %a3m; m ! 0, 1, 2, 3& and
%a4m; m ! 0, 1, 2, 3, 4&, ten-dimensional minimization, us-
ing the standard Strutinsky method. These results are pre-
sented in Fig. 2 for 80

40Zr40, 108
40 Zr68, 160

70Yb90, and 242
100Fm142

nuclei, whose tetrahedral equilibrium deformations are cal-
culated at a32 !0.13, 0.13, 0.15, and 0.11, respectively.

The right-hand side minima (Fig. 2) for 80Zr and 160Yb
nuclei are at oblate deformations; the corresponding en-
ergies visible in the figure are, respectively, at 1.4 MeV
and !0.1 MeV above the prolate g.s. minima, the latter
not shown in order not to perturb the legibility of the fig-
ure. For the other two nuclei, the right-hand side min-
ima correspond directly to the prolate ground states; in
the 242Fm case the tetrahedral minimum lies particularly
high (7.1 MeV above the g.s.). One can see from the fig-
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FIG. 2. Results of the multidimensional minimization of the
total nuclear energies projected on the quadrupole deformation
axis. The gamma deformation as well as all other deformations
vary along the b2 axis following the minimization, for each
curve separately. The left-hand side inset shows an exaggerated
(for better visibility) view of the tetrahedral shape at a32 ! 0.3,
roughly twice the calculated equilibrium deformation. The right-
hand side inset shows for comparison an oblate shape surface at
b2 ! 0.20, g ! 600 , i.e., roughly at the calculated equilibria.

ure that the calculated barriers are of the order of 1 MeV,
similarly to those encountered in the case of the experi-
mentally known prolate/oblate shape coexistence. Unfor-
tunately, lack of information about the collective inertia
parameters makes it impossible to speculate about the iso-
meric half-lives at present.

An experimental identification of proposed TD
d symme-

try may rely on one or a combination of several criteria.
First of all, within the class of the single-particle excita-

tions, the presence of the fourfold degeneracies will mani-
fest itself by the presence of a multitude of particle-hole
transitions of close-lying energies. For instance, if both
the particle and the hole states are associated to the
exact-symmetry fourfold degenerate levels, one should
expect a 16-fold exactly degenerate multiplet of transi-
tions. (In realistic situations, the nuclear polarization
effects are expected to be, in general, different for various
1p-1h excitations and the predicted 16-fold degeneracy
in the associated decay lines will be only approximate)
If the reference configuration was the tetrahedral 01

state, the corresponding 16 particle-hole excitations will
decay to it. If as a reference configuration an arbitrary
particle-hole excited state built on the tetrahedral mini-
mum was taken, for example, of a given spin-parity
Ip , a family of 2p-2h states can be constructed using
similar considerations with the resulting 16 close-energy
transitions feeding this Ip state. It thus becomes clear
that the noncollective decay spectra associated with
the tetrahedral minima might contain abundantly the
approximate 16-plets of transitions. Although populating
and observing such multiplets experimentally is by far
a nontrivial task, the good news is that the discussed
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for some rare-earth nuclei and nuclei in the Pb region (Girod
and Reinhard, 1982; Girod et al., 1989). A more detailed
study was carried out for the 190;192;194Hg nuclei by Delaroche
et al. (1989). Recently, the full solution of the collective
5DCH has been studied within constrained HFB theory based
on the Gogny D1S force. Studies in the Pb mass region have
been carried out (Libert, Girod, and Delaroche, 1999), and
also studying shell closure for light nuclei at N ¼ 16
(Obertelli et al., 2005) and for the N ¼ 20 and N ¼ 28
neutron-rich nuclei (Peru, Girod, and Berger, 2000) and the
role of triaxiality in the light Kr nuclei (Girod et al., 2009).
An overview of low-lying collective properties over the
whole mass region has been given, using the same methods,
by Delaroche et al. (2010).

A different approach was proposed by Walecka who de-
veloped a relativistic mean-field formulation (RMF)
(Walecka, 1974). A detailed discussion on the Lagrangians
used is given in several review papers (Serot and Walecka,
1986; Reinhard, 1989; Serot, 1992; Ring, 1996). A study
within the relativistic Hartree-Bogoliubov (RHB) framework
was performed specifically concentrating on shape coexis-
tence in the Pt-Hg-Pb nuclei (Nikšić et al., 2002). Within the
RMF approach, beyond-relativistic-mean-field studies were
performed recently, also incorporating configuration mixing
of mean-field wave functions projected onto angular momen-
tum J and particle number ðN; ZÞ, using the GCM approach,
restricting to axially symmetric systems (encompassing vi-
brational and rotational degrees of freedom) with applications
for 32Mg and 194Hg (Nikšić, Vretenar, and Ring, 2006a) (only
J projected) and for 24Mg, 32S, and 36Ar (J and particle
number projected) (Nikšić, Vretenar, and Ring, 2006b).
Even more general studies have been performed using pro-
jected states starting from triaxial quadrupole constraints on
the mean-field level with applications to the neutron-rich Mg
nuclei (Yao et al., 2009) as well as using the resulting three-
dimensional relativistic mean-field wave functions in a GCM
configuration mixing calculation (Yao et al., 2010) with
application for 24Mg. We mention that more restricted studies
of potential energy surfaces, aiming at the study of triaxial
ground-state shapes for the Sm and Pt nuclei, making use of
the three-dimensional RHB model have been performed
(Nikšić et al., 2010) also.

Relativistic mean-field theory was also used to extensively
study the 5DCH, starting from the relativistic energy density
functional, and applied to the even-even Gd nuclei (Nikšić
et al., 2009) and recently to the study of even-even Ba and Xe
nuclei (Li et al., 2010).

C. Similarities between shell-model and mean-field approaches

We come to the point that shell-model and mean-field
approaches, if technically possible, lead to much the same
physics. It seems clear that starting from a spherical mean
field only, and getting both the advantages and disadvantages
from the ensuing spherical closed-shell configurations near
stability, one inevitably runs out of computer capabilities.
Moreover, the model wave functions do not give genuine
physics insight (billions of components). Still, this approach
is a consistent and robust approach with strong predictive
power, such that systematic deviations between experiment

and theory have to be taken seriously and cannot be hidden by
parameter changes. On the other hand, making use of self-
consistent mean-field methods, one starts from an effective
nucleon-nucleon interaction in order to derive an optimized
deformed (quadrupole deformation, pairing, etc.) basis
j !ðqÞi. Whereas the shell-model space itself is a Hilbert
space, the set of Slater determinants constitutes a geometrical
surface within the Hilbert space [see Rowe and Wood (2010)
for a more detailed exposition]. The mean-field method
produces an energy surface which is semiclassical. As a
consequence and in order to reach results to be compared
with the data in nuclei, one needs to go beyond the mean-field
approximation. Here the technicalities of projecting from the
intrinsic frame to the lab frame, with good J; N; Z; . . . are
demanding when exploring the full space of the !, " quad-
rupole variables. Moreover, one has to take into account
mixing of the various intrinsic projected states in order to
arrive at the exact eigenstates. Calculations starting from a
spherical shell-model basis, or, using mean-field methods
(applied to the Mg, S, and Zr istopes) resulted in a strong
resemblance [see Reinhard et al. (1999) for a detailed
discussion]. A particular example is 40Ca for which both
the shell-model results (see Sec. II.A.1 and Fig. 1) and
beyond-mean-field calculations (Bender, Flocard, and
Heenen, 2003) are available.

III. MANIFESTATION OF COEXISTENCE IN NUCLEI

The occurrence of energy gaps, due to spherical shells or
subshells, and the mixing of the resulting proton and neutron
configurations are the essential ingredients to a unified view
of coexistence in nuclei. Figure 8 shows the regions of shape
coexistence that are discussed in this review and their location
with respect to magic numbers.

We present the experimental data that motivate this unified
view in a particular order. We first review mass regions for
which extensive data support the widespread and unequivocal
manifestation of shape coexistence, i.e., the regions centered

FIG. 8 (color online). The main regions of nuclear shape coex-
istence discussed in Sec. III are shown in relationship to closed
shells. Regions A, F: see Sec. III.B.1; regions B, C, D, and E: see
Sec. III.B.2; region G: see Sec. III.A.8; region H: see Sec. III.A.5;
region I: see Sec. III.A.3; region J: see Sec. III.A.2; region K: see
Sec. III.A.4; and region L: see Sec. III.A.1.
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for some rare-earth nuclei and nuclei in the Pb region (Girod
and Reinhard, 1982; Girod et al., 1989). A more detailed
study was carried out for the 190;192;194Hg nuclei by Delaroche
et al. (1989). Recently, the full solution of the collective
5DCH has been studied within constrained HFB theory based
on the Gogny D1S force. Studies in the Pb mass region have
been carried out (Libert, Girod, and Delaroche, 1999), and
also studying shell closure for light nuclei at N ¼ 16
(Obertelli et al., 2005) and for the N ¼ 20 and N ¼ 28
neutron-rich nuclei (Peru, Girod, and Berger, 2000) and the
role of triaxiality in the light Kr nuclei (Girod et al., 2009).
An overview of low-lying collective properties over the
whole mass region has been given, using the same methods,
by Delaroche et al. (2010).

A different approach was proposed by Walecka who de-
veloped a relativistic mean-field formulation (RMF)
(Walecka, 1974). A detailed discussion on the Lagrangians
used is given in several review papers (Serot and Walecka,
1986; Reinhard, 1989; Serot, 1992; Ring, 1996). A study
within the relativistic Hartree-Bogoliubov (RHB) framework
was performed specifically concentrating on shape coexis-
tence in the Pt-Hg-Pb nuclei (Nikšić et al., 2002). Within the
RMF approach, beyond-relativistic-mean-field studies were
performed recently, also incorporating configuration mixing
of mean-field wave functions projected onto angular momen-
tum J and particle number ðN; ZÞ, using the GCM approach,
restricting to axially symmetric systems (encompassing vi-
brational and rotational degrees of freedom) with applications
for 32Mg and 194Hg (Nikšić, Vretenar, and Ring, 2006a) (only
J projected) and for 24Mg, 32S, and 36Ar (J and particle
number projected) (Nikšić, Vretenar, and Ring, 2006b).
Even more general studies have been performed using pro-
jected states starting from triaxial quadrupole constraints on
the mean-field level with applications to the neutron-rich Mg
nuclei (Yao et al., 2009) as well as using the resulting three-
dimensional relativistic mean-field wave functions in a GCM
configuration mixing calculation (Yao et al., 2010) with
application for 24Mg. We mention that more restricted studies
of potential energy surfaces, aiming at the study of triaxial
ground-state shapes for the Sm and Pt nuclei, making use of
the three-dimensional RHB model have been performed
(Nikšić et al., 2010) also.

Relativistic mean-field theory was also used to extensively
study the 5DCH, starting from the relativistic energy density
functional, and applied to the even-even Gd nuclei (Nikšić
et al., 2009) and recently to the study of even-even Ba and Xe
nuclei (Li et al., 2010).

C. Similarities between shell-model and mean-field approaches

We come to the point that shell-model and mean-field
approaches, if technically possible, lead to much the same
physics. It seems clear that starting from a spherical mean
field only, and getting both the advantages and disadvantages
from the ensuing spherical closed-shell configurations near
stability, one inevitably runs out of computer capabilities.
Moreover, the model wave functions do not give genuine
physics insight (billions of components). Still, this approach
is a consistent and robust approach with strong predictive
power, such that systematic deviations between experiment

and theory have to be taken seriously and cannot be hidden by
parameter changes. On the other hand, making use of self-
consistent mean-field methods, one starts from an effective
nucleon-nucleon interaction in order to derive an optimized
deformed (quadrupole deformation, pairing, etc.) basis
j !ðqÞi. Whereas the shell-model space itself is a Hilbert
space, the set of Slater determinants constitutes a geometrical
surface within the Hilbert space [see Rowe and Wood (2010)
for a more detailed exposition]. The mean-field method
produces an energy surface which is semiclassical. As a
consequence and in order to reach results to be compared
with the data in nuclei, one needs to go beyond the mean-field
approximation. Here the technicalities of projecting from the
intrinsic frame to the lab frame, with good J; N; Z; . . . are
demanding when exploring the full space of the !, " quad-
rupole variables. Moreover, one has to take into account
mixing of the various intrinsic projected states in order to
arrive at the exact eigenstates. Calculations starting from a
spherical shell-model basis, or, using mean-field methods
(applied to the Mg, S, and Zr istopes) resulted in a strong
resemblance [see Reinhard et al. (1999) for a detailed
discussion]. A particular example is 40Ca for which both
the shell-model results (see Sec. II.A.1 and Fig. 1) and
beyond-mean-field calculations (Bender, Flocard, and
Heenen, 2003) are available.

III. MANIFESTATION OF COEXISTENCE IN NUCLEI

The occurrence of energy gaps, due to spherical shells or
subshells, and the mixing of the resulting proton and neutron
configurations are the essential ingredients to a unified view
of coexistence in nuclei. Figure 8 shows the regions of shape
coexistence that are discussed in this review and their location
with respect to magic numbers.

We present the experimental data that motivate this unified
view in a particular order. We first review mass regions for
which extensive data support the widespread and unequivocal
manifestation of shape coexistence, i.e., the regions centered

FIG. 8 (color online). The main regions of nuclear shape coex-
istence discussed in Sec. III are shown in relationship to closed
shells. Regions A, F: see Sec. III.B.1; regions B, C, D, and E: see
Sec. III.B.2; region G: see Sec. III.A.8; region H: see Sec. III.A.5;
region I: see Sec. III.A.3; region J: see Sec. III.A.2; region K: see
Sec. III.A.4; and region L: see Sec. III.A.1.
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Summary

I Profiting from high-performance computing, over the last few years the
range of applicability of the shell model and of beyond-mean-field methods
has been enlarged such that both methods begin to cover the physics
relevant for shape coexistence (intruder states, good quantum numbers,
configuration mixing, . . . ).

I Shape coexistence emerges in both methods in similar situations: np-nh
excitations involving intruder states.

I In the context of the shell these states are usually interpreted ”vertically”
in terms of occupations of spherical shells (”islands of inversion”).

I In the context of self-consistent mean-field models ”and beyond” these
states are usually interpreted ”horizontally” in terms of gaps in the Nilsson
diagram.

The difference in interpretation appears to be more ”cultural” than physical.
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Bottom line

What is Shape Coexistence?
”Shape coexistence is a very peculiar nuclear phenomenon consisting in the
presence in the same nuclei, at low excitation energy, and within a very narrow
energy range, of two or more states (or bands of states) which: (a) have well
defined and distinct properties, and, (b) which can be interpreted in terms of
different intrinsic shapes.”
A. Poves, foreword to the 2015 special issue of JPG on ”Shape coexistence in nuclei”

I Shape coexistence is a generic feature of atomic nuclei that in one way or
the other is exhibited by the majority of nuclei. It can come in many
flavours:

I coexisting structures in regions of transitional nuclei (evolution with shapes
with filling of shells)

I island(s) of inversion
I rotational bands of ”spherical nuclei” including doubly-magic ones (16O,

40Ca, 56Ni, . . . )
I fission isomers / superdeformation / hyperdeformation
I clustering

I Shape coexistence imprints its presence on (the systematics of) virtually
all spectroscopic properties of nuclei at low excitation energy.
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