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Why are we interested in hot and dense
matter ?

Astrophysical point of view :

Supernovae/hypernovae (stellar evolution,
explosion mechanism, formation of compact
objects,. . .)

Compact object mergers (gravitational
waves, γ-ray bursts, . . .)

Site for production of heavy elements and
chemical evolution of the universe

→ see talks this afternoon

Crab nebula (Hubble telescope)

Microphysics point of view :

Neutrino interactions (with matter and neutrino oscillations)

Study (strongly interacting) matter under extreme conditions of temperature
and density not reachable in terrestrial experiments
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What is “hot and dense” ?
We want to describe :

Core-collapse supernovae and subsequent neutron star/black hole formation
Binary neutron star mergers and neutron star black hole mergers
Neutron stars

→ Large domains in density, temperature and asymetry have to be covered

temperature 0 MeV ≤ T < 150 MeV
baryon number density 10−11 fm−3 < nB < 10 fm−3

electron fraction 0 < Ye < 0.6

and matter composition changes dramatically throughout !

Different regimes :
Very low densities and temperatures :

I dilute gas of non-interacting nuclei → nuclear statistical equilibrium (NSE)

Intermediate densities and low temperatures :
I gas of interacting nuclei surrounded by free nucleons → beyond NSE

High densities and temperatures :
I nuclei dissolve

→ strongly interacting (homogeneous) hadronic matter
I potentially transition to the quark gluon plasma
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Constraints on the EoS
1. Constraints related to nuclear experiments and theoretical developments

Extracting parameters of
symmetric nuclear matter
around saturation
(n0, EB ,K, J, L)

Data from heavy ion collisions
(flow constraint, meson
production, . . .)

Data on nucleon-nucleon
interaction fixing startpoint of
many-body calculations (data
on hyperonic interactions scarce
→ talk by E. Khan)

Low density neutron matter :
Monte-Carlo simulations and
EFT approaches

Distribution of values for J and L
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[MO, M. Hempel, T. Klähn, S. Typel 2016]
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Constraints on the EoS
2. Constraints from astrophysical observations

Observed masses in binary systems (NS-NS,
NS-WD, X-ray binaries) with most precise
measurements from double neutron star
systems.

Many NS-NS systems give masses close to
1.4M�
Two precise mass measurements in NS-WD
binaries

I M = 1.928± 0.017M� (PSR J1614-2230)
[Demorest et al 2010, Fonesca et al 2016]

I M = 2.01± 0.04M� (PSR J0348+0432)
[Antoniadis et al 2013]
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[Update from Lattimer & Prakash, 1012.3208]

2 M� perhaps not the end of the story (e.g. indications for a 2.4 M� NS in
B1957+20 (van Kerkwijk et al., ApJ 2011))
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Constraints on the EoS

3. Other NS observations

Measurements of rotational frequency
I f = 716 Hz (PSR J1748-2446ad)

(Hessels et al, Science 2006)

I f = 1122 Hz not confirmed ! (XTE
J1739-285) (Kaaret et al. ApJ 2007)

Theory : Kepler frequency fK =
1008Hz (M/M�)1/2 (R/10km)−3/2

(Haensel et al. A&A 2009)

→ A measured frequency of 1.4 kHz
would constrain R1.4 < 9.5 km !

APR

FPS

DH

BGN1H1

GMGS

BM165

SQM3 SQM1

(Courtesy of M. Fortin, CAMK)

Radius determinations so far model dependent (atmosphere model, distance,
. . .)

Moment of inertia, asteroseismology, . . .model dependent, too → no
stringent constraint so far
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Clustered matter
Nuclear abundances important for composition of (proto-)neutron star crust,
nucleosynthesis and CCSN matter
Modelling does not only depend on the interaction chosen :

Theoretical description of inhomogeneous system (interplay of Coulomb and
strong interaction, surface effects, . . .)

Binding energies of (neutron rich) nuclei

Treatment of excited states

Transition to homogeneous matter (stellar matter is electrically neutral !)

Nuclear abundances within different models (same thermodynamic conditions, gas density negligible)
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Reaction rates

Overall reaction rates : matter composition + individual rates
I Homogeneous matter : calculate individual rates in hot and dense medium

→ collective response
I Clustered matter : rates on nuclei far from stability (up to now essentially shell

model)

Different (weak) interaction
rates are extremely important !
Neutrino emission, electron
capture, . . .

And very sensitive to the
different ingredients

I Example : influence of
nuclear masses for nuclei with
neutron numbers between
N = 50 and N = 82
→ up to 30% change in
overall EC rate

Nuclear masses and EC rates
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Neutron matter and M-R relation
Comparison of different NM calculations
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ab-initio calculations

For nB <∼ 0.16 fm−3, all ab-initio
calculations in reasonable agreement

Uncertainties mainly due to 3N forces

Constraints on NS M -R relation from
BPS crust (nB < n0/2) + NM +
polytropes

But at low M radii very sensitive to
crust-core matching and treatment of
the crust [M. Fortin et al. 2016]

Development of ’generic’ parameterised
EoS

Combination of NM results + Mmax = 1.97M�
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The hyperon puzzle
1. The problem

Most models predict hyperons at nB >∼ 2− 3n0 but give maximum neutron
star masses of ∼ 1.4M� → need short-range repulsion to stiffen the EoS

2. Different solutions

Let quark matter appear early (very early !) enough :
Phenomenological quark models can be supplemented with the necessary
repulsion [Weissenborn et al., ’11, Alford et al. ’07,. . .]

Modify the interaction
I In microscopic models (BHF) this seems to

be a problem [Vidaña et al., ’11, Schulze & Rijken ’11]

I In phenomenological models not difficult
[Bednarek et al. ’12, Bonanno & Sedrakian ’12,Weissenborn et al. ’12, MO

et al. ’12,. . .], high density repulsion mainly via
Y Y interaction

Different hyperonic interactions
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[MO, C. Providencia, F. Gulminelli, A. Raduta 2015]

Large variety in different radii and strangeness contents
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More remarks on ’exotics’
Phase diagram of baryonic matter with strangeness
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Is the onset of hyperonic degrees of
freedom accompanied by a phase
transition ?

If yes, many interesting effects :
neutrino mean free path . . .

Model and interaction dependent

Temperature effects in favor of
non-nucleonic degrees of freedom

What about nuclear resonances,
mesons, muons ?

Is there a transition to the QGP ?

Strangeness fraction > 10−4
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[MO, M. Hempel, T. Klähn. S. Typel, 2016]
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Conclusion

We need to know matter properties (EoS and reaction rates) in regions not
accesible to experiments !

1. Many open questions :

1 How and under which conditions do non-nucleonic degrees of freedom
appear ?

2 When does nuclear matter deconfine ?

3 Can we develop a QCD based framework that covers the relevant range of
variables ?

4 How to better treat spatially inhomogeneous matter and cluster formation ?

5 How to describe phase transitions consistently ?

Micaela Oertel (LUTH) Matter in NS/CCSN Paris, June 21st, 2016 13 / 14



Idea of the CompOSE project within
NewCompstar

Provide data tables for different EoS ready for further use in astrophysics of
compact objects and nuclear physics (core team : S. Typel, T. Klähn, MO) :

http ://compose.obspm.fr

CompOSE is a repository of EoS tables in a common format for direct usage
with information on a large number of thermodynamic properties, on the
chemical composition of dense matter and, if available, on microphysical
quantities of the constituents.

CompOSE allows to interpolate the provided tables using different schemes
to obtain the relevant quantities, selected by the user, for grids that are
tailored to specific applications.

CompOSE can provide information on additional thermodynamic quantities,
which are not stored in the original data tables, and on further quantities,
which characterize an EoS such as nuclear matter parameters and compact
star properties.
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